Several Classifiers for Intruder Detection Applications

Elena Roxana BUHUŞ, Lăcrimioara GRAMA, Corneliu RUSU

Technical University of Cluj-Napoca Faculty of Electronics, Telecommunications and Information Technology Basis of Electronics Department Signal Processing Group

Outline

- Research aim
- Acoustic Wildlife Intruder Detection System
- Wildlife Database
- Feature extraction Linear Predictive Coding
- Classification
- Results
- Conclusion

Research Aim

- To present some possible intruder detection systems and the influence of impulse-like signals upon the overall classification accuracy
 - Acoustic wildlife intruder detection system (WIDS)
- Two different scenarios are used
 - Scenario 1: five sound classes are considered (last class belongs to impulsive sounds – gunshots)
 - Scenario 2: we dropped out the impulsive sound class

Research Aim

- Several classification algorithms were used
 - To determine the effect of different number of features (LPC coefficients and prediction error variance) towards the classification accuracy
 - To determine the effect of impulsive sounds (gunshots) in the classification accuracy
- Noise coming from human activity has become a common addition to natural soundscapes and has the potential to harm wildlife and erode human enjoyment of nature
- Such noise can be sounds originate from heavy cars, chainsaws, gunshots, human voice, etc. ⇒ a WIDS is a need

Acoustic Wildlife Intruder Detection System

Wildlife Database

- Chainsaws dataset 356 audio files originated from 18 different types of chainsaws (SPG)
- Tractors dataset 260 audio files originated from 17 different types of tractors (SPG)
- Human voice dataset 207 speech sounds originated from 50 different former students from the TUCN
- Gunshots dataset 120 audio files originated from 40 different types of guns (Internet)

- 16 kHz, 16-bit
- None of the audio signals are studio recordings ⇒ they are subject to some additive noise from surroundings

Feature extraction - LPC

- Features vector $A_k = \begin{bmatrix} \sigma_k^2 & a_{k,1} & a_{k,2} & \dots & a_{k,n} \end{bmatrix}$
 - σ_k^2 prediction error variance
 - $a_{k,i}$ last n LPC coefficients
- Features matrices $F_{N \times (L+1)} = \begin{bmatrix} A_{1,L} \\ A_{2,L} \\ \vdots \\ A_{N,L} \end{bmatrix}$
 - N = 1.597/1.477 total number of audio files
 - *L* = 10, 50, 100, 150, 200, 250, 300 orders for the prediction filter
- .mat files (binary MATLAB® files that store workspace variables)
- arff files (attribute relation file format ASCII text file which describes a list of instances sharing a set of attributes)

ARFF File Example

```
    Dataset name

@relation LPC 10 ←
@attribute Error numeric
@attribute A1 numeric
@attribute A2 numeric
                                                 Attributes (name + type)
@attribute A10 numeric
@attribute Class {Bird, Chainsaw, Tractor, Human, Gunshot}
                                                              Target/Class variables
@data
0.00006, -1.4444, 1.4813, -1.431, 1.1014, -0.44335, 0.88751, -1.0135, 0.9789,
-0.75417, 0.33759, Bird
0.031915, -0.70952, 0.36178, -0.12324, 0.051033, -0.09611, 0.1399,
                                                                                       Data values
-0.090546,0.085472,-0.10761,0.20698,Chainsaw
                                                                                       (for each attribute)
0.003796, -1.4047, 0.85599, -0.40377, 0.21798, -0.41251, 0.37959, -0.12573, 0.059844,
-0.095607,0.053729,Tractor
0.000006, -3.8437, 5.5964, -2.4234, -3.2081, 4.7916, -1.2946, -2.1592, 2.4153,
-1.0561,0.18461,Human
0.007638, -1.2239, 0.64029, -0.43115, 0.30726, -0.23148, 0.20273, -0.17043, 0.18041,
-0.18936, 0.12204, Gunshot
```

Classification

- 1. Simple Logistic (C1): builds linear logistic regression models
- 2. Sequential Minimal Optimization (C2): fast training of SVM using SMO
- 3. J48 (C3): generates a pruned or unpruned C4.5 decision tree
- 4. J48 + Attribute Selected Classifier (C4): dimensionality of training and test data is reduced by attribute selection before being passed on to J48 classifier
- 5. J48 + Filtered Classifier (C5): runs J48 classifier on data that has been passed through a filter which discretizes a range of numeric attributes in the dataset into nominal attributes; is based only on the training data and test instances will be processed by the filter without changing their structure
- 6. Decision Table (C6): builds + uses a simple decision table majority classifier
- 7. JRip (C7): implements a propositional rule learner, Repeated Incremental Pruning to produce error reduction
- 8. REPTree (C8): fast decision tree learner; builds a decision tree using information gain/variance and prunes it using reduced-error pruning (with backfitting)

Classification

- Stratified 10-fold cross validation
- Two scenarios
 - *Scenario 1*: 1 597 audio files (all five classes)
 - Scenario 2: 1 477 audio files (no gunshots class)
 - ⇒112 experiments: 2 scenarios x 7 different orders for the prediction filter x 8 classifiers

Results – Scenario 1

NI ((1	Overall classification accuracy [%]						
No. of features Classifier	11	51	101	151	201	251	301
Simple Logistic	91.6	93.7	93.0	93.6	93.9	94.4	94.3
SMO	86.9	89.4	88.2	88.6	88.2	88.9	89.5
J48	94.1	94.8	93.2	93.5	93.5	94.2	93.0
J48+Attribute Selected Classif.	93.4	93.8	92.9	94.1	93.9	93.6	93.8
J48+Filtered Classif.	93.2	92.1	91.4	92.0	90.0	92.0	91.5
Decision Table	87.2	88.7	89.1	86.9	88.3	88.2	87.9
JRip	92.5	92.8	90.9	90.9	91.7	91.6	91.5
REPTree	92.2	91.5	91.3	90.0	90.4	90.4	90.2

Results - Scenario 1

Scenario 1 – Accuracy classification evolution for all experiments

	Classification accuracy						
Class	(C3, 51) 94.8%	(C1, 251) 94.4%	(C4, 151) 94.1%				
Birds	97.0%	97.3%	95.3%				
Chainsaws	96.9%	95.9%	97.1%				
Tractors	91.7%	86.3%	91.1%				
Human voices	99.0%	99.5%	99.0%				
Gunshots	75.2%	79.5%	76.4%				

- Lowest precision: gunshots
- The acoustical detection for gunshot depends on the muzzle blast that generates an impulse wave with a sound wave pressure level of 140 dB or louder

Results - Scenario 1

=== Confusion Matrix (C3, 51) ===						
В	С	T	Н	G	< classified as	
638	2	3	0	11	Bird (B)	
2	346	3	0	5	Chainsaw (C)	
4	1	244	0	11	Tractor (T)	
2	0	0	205	0	Human (H)	
12	8	16	2	82	Gunshot (G)	

Scenario 1 – Confusion Matrix:

J48,

Simple Logistic,

J48+Attribute Selected Classifier

=	=== Confusion Matrix (C1, 251) ===						
В	С	T	Н	G	< classified as		
646	1	2	0	5	Bird (B)		
1	348	3	0	4	Chainsaw (C)		
2	2	251	0	5	Tractor (T)		
0	0	0	206	1	Human (H)		
15	12	35	0	58	Gunshot (G)		

=	=== Confusion Matrix (C4, 151) ===						
В	С	Т	Н	G	< classified as		
642	1	6	0	9	Bird (B)		
9	337	6	0	4	Chainsaw (C)		
9	2	236	0	13	Tractor (T)		
2	0	0	205	0	Human (H)		
12	7	15	15	84	Gunshot (G)		

Results – Scenario 2

NI ((t	Overall classification accuracy [%]						
No. of features Classifier	11	51	101	151	201	251	301
Simple Logistic	97.6	97.2	98.7	97.8	97.8	98.5	98.7
SMO	93.2	95.2	95.3	93.8	93.6	94.9	95.5
J48	96.8	95.8	97.6	97.4	97.4	96.5	97.0
J48+Attribute Selected Classif.	97.0	98.0	97.5	97.4	97.8	97.2	96.9
J48+Filtered Classif.	93.4	95.6	96.7	95.8	94.8	95.8	95.8
Decision Table	90.8	94.0	94.5	93.8	93.6	93.9	94.5
JRip	96.0	95.0	97.2	94.4	95.2	96.7	97.0
REPTree	95.6	96.2	95.9	96.2	96.0	96.2	96.1

Results – Scenario 2

	Classification accuracy						
Class	(C1, 101) 98.7%	(C4, 51) 98.0%	(C3, 101) 97.6%				
Birds	99.1%	99.5%	98.5%				
Chainsaws	99.4%	98.5%	97.7%				
Tractors	96.6%	91.9%	94.6%				
Human voices	99.0%	100.0%	99.0%				

Scenario 2 – Accuracy classification evolution for all experiments

Conclusion

- We have performed a study upon several classification algorithms to determine the effect of different number of features (LPC coefficients and prediction error variance) towards the classification accuracy
- The algorithms from our experiments can be used to detect sound sources in wildlife areas
- We have used two different scenarios
 - *Scenario* 1: five different sound classes (birds, chainsaws, tractors, human voices, and gunshots)
 - *Scenario* 2: four different sound classes (birds, chainsaws, tractors, and human voices)
 - The gunshots class was removed to see the influence of impulsive signals in the overall accuracy of each classifier

Conclusion

- For each scenario, eight classifiers were exemplified
- The best results were obtained in *Scenario 2*, for Simple Logistic classifier, regardless the order used for the predictor constant CCR greater than 97%
- From the detailed precision by class reports, we have noticed, for *Scenario 1*, that the overall lowest precision obtained is for gunshots class
- The experimental results prove that LPC coefficients can be used for different classifiers, in the context of source sound detection, with overall high correct classification rates

Conclusion

- A possible future work could be experimenting and analyzing more classifiers in WEKA
 - We consider that we can identify the best parameters configuration for each experimented classifier and evaluate the performance
 - This investigation might lead to new results of using efficiently classifiers in WEKA
 - Also we shall concentrate in future works in real-life experiments
- For this investigation, we have used a database just for five sound types
 - For future work we are planning to extend the database
 - Possible sound types could be dogs, bears and even wild cats

Several Classifiers for Intruder Detection Applications

Elena Roxana BUHUŞ, Lăcrimioara GRAMA, Corneliu RUSU

Technical University of Cluj-Napoca
Faculty of Electronics, Telecommunications and Information Technology
Basis of Electronics Department
Signal Processing Group

