

Dr. László Tóth

University of Szeged

Department of Computer Algorithms
 and Artificial Intelligence

Application of Deep Convolutional Neural
Networks to Speech Recognition

 Hidden Markov modelling (HMM) has been the standard

speech recognition technology since the early 80’s

 But from the late 80’s attempts have been made to use ANNs

 The most successful was the HMM/ANN hybrid model

 The ANN is responsible for the local labeling (probability estimates)

 The utterance level combination/search is performed by the HMM

 Slightly better results than with HMMs, but no breakthrough

 Deep neural networks use the same HMM/ANN scheme

 The breakthrough is from using DNNs instead of ANNs

 Although there are approaches to replace the HMM part as well by

neural models (end-to-end speech recognition), these are worse yet

Neural networks in speech recognition

• 2006: The first deep learning paper (Science, image data)

• 2009: First application to speech recognition

• Immediately a new record on the TIMIT dataset

• It still holds that the new deep learning ideas are first tried on image data

• 2011: Google and Microsoft also applies deep learning

• They report an error rate decrease of 10-30% in their products

• 2015-16: They already talk about „superhuman performance”

• „Achieving Human Parity in Conversational Speech Recognition”

(Microsoft, 2016)

• “Delving Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification” (Microsoft, 2015)

The deep learning revolution

The effect of deep learning on ASR
(Slide by Li Deng, ICASSP 2016 keynote talk)

 New learning algorithms and activation functions

 E.g. RBM-pretraining, ReLU activation

 The availability of enormous data sets

 The advantages of deep learning do not show up on small data

 The availability or fast hardware

 The invention of GPUs made deep learning accessible to everyone

 Many of the algorithmic ideas (like the convolutional model)

were present decades ago

 But the lack of hardware and large training datasets did not allow

to convincingly prove the advantages of deep models

The Sources of this Success

We applied only 1-2 hidden layers

 - Trained by error backpropagation

 (gradient-based optimization)

Why only 1-2 hidden layers?

 - theoretically, it can achieve arbitrary accuracy

by increasing the amount of hidden neurons

 - training was already slow

Conventional “shallow” ANNs

 Deep network: many (>2) hidden layers

 With a given number of neurons, arranging them into many layers is

more efficient than using only one big hidden layer!

 The problem of speed

 Solved by the invention of GPUs (20-40 times speedup!)

 The problem of training: backpropagation is not efficient

for many hidden layers

 Hinton invented the RBM pre-training algorithm in 2006

 Many new refinements since then (ReLU activation, new

intialization schemes, batch normalization…)

 Current wisdom: pre-training is not necessary if you have

enough training data

Deep networks

 We modify the activations function of the neurons

 Replace sigmoid (or tanh) with the max(0,x) function (ReLU)

 These neurons seem to be more suitable for building deep nets
 The activation does not saturate no “vanishing gradient” effect

 Weight normalization is required to prevent the weights from “blowing up”

Rectifier Neural Nets (Glorot, 2011)

 DBN: DBN pre-training

 DPT: discriminative pre-training

 RECT: rectifier activation (no pre-training)

Results on TIMIT

Comment: HMM: 19.9%

Results on Broadcast News Data

 We now almost exclusively use only rectifier networks

 „the new de-facto standard of deep learning” (Sonoda & Murata)

 „the most popular non-linear function is the rectified linear unit

(ReLU)” (Hinton et al., Nature 2015)

Method Pre-training Backpropagation

DBN pretraining 48 hours 14 hours

DPT pretraining 9 hours 11 hours

ReLU neurons 0 hours 14,5 hours

A Comparison of Training Times
(Broadcast news dataset)

 Yet another method taken from image processing

 The basic concept was already present in the 80’s, 90’s!

 But it’s only now that we can efficiently train deep structures

 (A convolutional network is necessarily deep)

 CNNs have a special network structure

 It assumes that the input builds up hierarchically

 Lower levels: extraction of local, but detailed information

 Higher levels: detection of wide-spreading abstract structures

 It was first applied to speech recognition only in 2012

 (with the exception of TDNN, 1989!)

 it can be combined with all the previously mentioned techniques

Convolutional Neural Nets

An Example: Face Recognition

 A face is built up hierarchically: lines, circles,… nose, eye,…face

 The 3 main features of convolutional processing:

 Locality: each neuron processes only

a small part of the picture

 Weight sharing: the same neuron is

evaluated at several positions

 Pooling: the resulting values are

pooled (eg. taking the max)

 Example: a “nose detector”

 Of course, there may be further,

convolutional of fully conntd. layers

 Main advantages:

 Hierachical processing

 Shift-invariance

 Image recognition may require a lot of layers

 Lowest levels: local, high resolution details

 Higher levels: covering wider and wider areas with lower and

lower resolution, detecting more and more abstract components

Convolutional Neural Networks

 HMMs: the conventional input is the MFCC representation

 A short-term spectral representation plus a DCT to decorrelate the features

 The time context is not taken into consideration (only by the “delta” vectors)

 DNNs:

 DNNs do not require the decorrelation of features

 They can efficiently make use of a wider context (9-33 neighboring frames)

 From MFCCs we returned to a spectro-temporal input

representation

 f: 23-40 mel bands

 t: 9-33 frames

 This is an image, so we can apply CNNs!

How to Apply CNNs to Speech?

Convolution along the frequency axis

 Basic idea: Abdel-Hamid (2012),

Sainath (2013)

 How to exploit the shift invariance of

CNNs?

 The frequency axis is divided into wider

bands (the optimum was at 7 bands)

 We allow small shifts along the freq. axis

 The output of the convolutional layers is

processed by further fully connected

layers

 Why convolution (shift invariance) helps:

decreases the speaker and speaking-style

variance (e.g. tolerates small differences

in the formant positions)

Results (TIMIT)

Phone error rate as a function of the pooling size

• The optimal size for „pooling” (shifting) is 4-5 mel-channels

• Convolution reduces the error rate by about 9% relative

•There is error reduction already at pooling size = 1

(there is no pooling, just a local processing of spectral parts!)

Convolution along the time axis

 Basic idea: Vesely (2011)

 We divide the input along the time axis

 Why convolution helps:

 Allowing shifts is not important (the

HMM handles time shifts)

 It allows the hierarchical processing

of a wider input with fewer neurons

 Very similar to the Time-Delay Neural

Network of Waibel et al from 1989!

 As by “convolutional” people mean

convolution by frequency, I prefer calling

it the hierarchical model

 The Kaldi implementation of TDNN

consists of several such layers

Results (TIMIT)

Fully connected ReLU network 20.6%

Convolutional network (along time) 18,6%

•Convolution along time brings an error rate reduction of about 9%

Convolution along both axes

• The two concepts of convolution

(time domain – Vesely vs. freq. domain – Abdel Hamid)

are totally different, but can be easily combined

• and this combination results in a significant reduction

of the recognition error rates.

Convolution along both axes

 The input is divided along both time

and frequency

 The lowest layer perform the convolution

along frequency

 A higher layer performs the fusion along

time

 The are several further, fully connected

layers

Error rates (TIMIT)

Convolution only along the freq. axis 18.8%

Convolution only along the time axis 18.6%

Convolution along both axes 17.6%

• Compared to the previous best result, by combining the two

convolution methods we obtained a further error rate reduction of

6% relative

The Maxout Activation Function

 “Maxout” can be interpreted as a generalization of the rectifier

activation function

 The neurons are divided into groups (eg. 2 neurons/groups)

 There is one output pre group, defined as the maximum of the

linear activations within the group

 The convolutional step can be easily combined with the

maxout activation:

 Convolution: The „pooling” step fuses the outputs of the same neuron obtained

at different positions

 Maxout: The „pooling” step fuses the outputs of different neurons on the same

input

 The two pooling operations

can be executed in one step

Convolutional Maxout Neurons

Results
(TIMIT)

• Other authors have found that Maxout outperforms ReLU most

importantly in low-resource conditions (<30h) (Miao et al, 2013)

• Since then, newer variants of the ReLU activation have been

proposed, but these are not convincingly better.

• Currently, ReLU is the most popular activation function for DNNs

Network type PhER (%)

Conv. ReLU 17,6%

Conv. Maxout 17,0%

 During training, a group of randomly selected neurons (10-

50%) are discarded (their output is replaced by zeros)

 Effect: the neurons within the same layer are forced to rely less

on each other

 Result: decreases the risk of overfitting

 It can be combined with all the previous network types

 The only drawback is that training takes 3-5 time longer

 Results

(TIMIT):

The „Dropout” Method (Hinton et al, 2012)

Network type PhER (%) PhER with

dropout (%)

Conv. ReLU 17,6% 16,7%

Conv. Maxout 17,0% 16.5%

 Goal: get rid of hand-crafted features (MFCC, PLP,…)

 They might be suboptimal

 They require expert knowledge

 Long-term Goal: “End-to-end” speech recognition

 No separate modules, jut one big network

 Input: raw sound file, output: text

 It would be a very big theoretical achievement

 However, a lot of experts are very skeptic if it’s possible

Current trends #1: Recognition from
 Raw Waveforms

 The first step of current feature extraction methods is to process

the signal by a filter bank (e.g mel-filters)

 The operation of a filter is very similar to the operation of a neuron

 This gives the idea to learn the filter parameters by a special

convolutional network structure

Recognition from Raw Waveforms

 Tüske et al (Interspeech 2014):

 Google (Interspeech 2015):

 Google:

Learning Filter Banks- Results

 DNNs:

 We did not obtain significant improvements above 5-6 layers

 Most people in the literature do not go beyond 5-9 layers

 CNNs:

 We applied only 1+1 convolutional layer (along freq+time)

 “Early” literature: 2 conv. layers is slightly better than 1,

no further improvements with 3 (Sainath et al., 2013)

 But nowadays, in image processing, people experiment with

CNNs of 50-150 layers!

 The training of these very deep networks require special

solutions

Current Trends #2: Very Deep CNNs

 Methods to efficiently backpropagate the error to lower layers:

 „linear pass-through” or „jump” connections

 „Highway networks”

 „Linearly augmented” layers

 „Residual network”

 These all operate quite similarly:

 They introduce direct connections

between layers farther away

 This allows the direct propagation

of the error to deeper layers, thus

alleviates the “vanishing gradient” problem

Current Trends #2: Very Deep CNNs

 One layer of a normal net (V is an extra linear transformation):

 In comparison, a linearly augmented layer:

 T is not necessarily a full transformation matrix, good results were

obtained using a diagonal matrix, or a fixed (non-trainable) unity matrix

(Results on TIMIT, taken from Droppo et al, ICASSP 2016)

Example #1: Linearly Augmented Layers

 The networks has „highway” connections which allow the

information to flow without transformation

 Layer of a conventional net:

 Layer of a highway net:

 Where T is a „transfer gate”:

 T can take values between 0 and 1

 The output in the cases of T=0 or T=1:

 That is, T controls the ratio of how much is

let through from the non-transformed x

and the transformed H(x)

Example #2: Highway Networks

 Currently, the fastest developing trend in speech recognition is

the application of Recurrent Neural Networks (RNNs)

 While images have no “directions”, speech is a left-to-right

process, which is definitely a very important factor

 Currently, very good results are achieved by RNNs, or its more

refined variants (LSTM, GRU, …)

 Right now, in speech recognition RNNs seems to be more

promising for future improvements than CNNs

 But the two may be combined, eg. using convolution in the

deeper layers and recurrent layers at higher levels!

Current trends #3: Combination with
Recurrent Networks

Thank you for your attention!

