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 Hidden Markov modelling (HMM) has  been the  standard 

speech recognition technology since the early 80’s 

 But from the late 80’s attempts have been made to use ANNs  

 The most successful was the HMM/ANN hybrid model 

 The ANN is responsible for the local labeling (probability estimates) 

 The utterance level combination/search is performed by the HMM 

 Slightly better results than with HMMs, but no breakthrough 

 Deep neural networks use the same HMM/ANN scheme 

 The breakthrough is from using DNNs instead of ANNs 

 Although there are approaches to replace the HMM part as well by 

neural models (end-to-end speech recognition), these are worse yet 

Neural networks in speech recognition 



• 2006: The first deep learning paper (Science, image data) 

• 2009: First application to speech recognition 

• Immediately a new record on the TIMIT dataset 

• It still holds that the new deep learning ideas are first tried on image data  

• 2011:  Google and Microsoft also applies deep learning 

• They report an error rate decrease of 10-30% in their products 

• 2015-16: They already talk about „superhuman performance” 

• „Achieving Human Parity in Conversational Speech Recognition” 

(Microsoft, 2016) 

• “Delving Deep into Rectifiers: Surpassing Human-Level            

Performance on ImageNet Classification” (Microsoft, 2015) 

The deep learning revolution 



The effect of deep learning on ASR 
(Slide by Li Deng, ICASSP 2016 keynote talk) 



 New learning algorithms and activation functions 

 E.g. RBM-pretraining, ReLU activation 

 The availability of enormous data sets 

 The advantages of deep learning do not show up on small data 

 The availability or fast hardware 

 The invention of GPUs made deep learning accessible to everyone 

 Many of the algorithmic ideas (like the convolutional model) 

were present decades ago 

 But the lack of hardware and large training datasets did not allow 

to convincingly prove the advantages of deep models 

The Sources of this Success 



We applied only 1-2 hidden layers 

 - Trained by error backpropagation 

    (gradient-based optimization) 
 

Why only 1-2 hidden layers? 

 - theoretically, it can achieve arbitrary accuracy 

by increasing the amount of hidden neurons   

 - training was already slow 

Conventional “shallow” ANNs 



 Deep network: many (>2) hidden layers 

 With a given number of neurons, arranging them into many layers is 

more efficient than using only one big hidden layer! 

  The problem of speed 

 Solved by the invention of GPUs (20-40 times speedup!) 

 The problem of training: backpropagation is not efficient 

for many hidden layers  

 Hinton invented the RBM pre-training algorithm in 2006 

 Many new refinements since then (ReLU activation, new 

intialization schemes, batch normalization…) 

 Current wisdom: pre-training is not necessary if you have 

enough training data 

Deep networks 



 We modify the activations function of the neurons 

 Replace sigmoid (or tanh) with the max(0,x) function (ReLU) 

 These neurons seem to be more suitable for building deep nets 
 The activation does not saturate  no “vanishing gradient” effect 

 Weight normalization is required to prevent the weights from “blowing up” 

 

 

 

 

 

 

Rectifier Neural Nets (Glorot, 2011) 



 

 

 

 

 

 

 

 

   DBN: DBN pre-training 

   DPT: discriminative pre-training 

   RECT: rectifier activation (no pre-training) 

Results on TIMIT 



 

 

 

 

 

  

 

 

       

 

Comment: HMM: 19.9% 

Results on Broadcast News Data 



 

 

 

 

 

 

 

 We now almost exclusively use only rectifier networks 

 „the new de-facto standard of deep learning” (Sonoda & Murata) 

 „the most popular non-linear function is the rectified linear unit 

(ReLU)” (Hinton et al., Nature 2015) 

 

 

Method Pre-training Backpropagation 

DBN pretraining 48 hours 14 hours 

DPT pretraining 9 hours 11 hours 

ReLU neurons 0 hours 14,5 hours 

A Comparison of Training Times 
(Broadcast news dataset) 



 Yet another method taken from image processing 

 The basic concept was already present in  the 80’s, 90’s! 

 But it’s only now that we can efficiently train deep structures 

 (A convolutional network is necessarily deep) 

 CNNs have a special network structure 

 It assumes that the input builds up hierarchically 

 Lower levels: extraction of local, but detailed information 

 Higher levels: detection of wide-spreading abstract structures 

 It was first applied to speech recognition only in 2012 

 (with the exception of TDNN, 1989!) 

 it can be combined with all the previously mentioned techniques 

 

Convolutional Neural Nets 



An Example: Face Recognition 

 A face is built up hierarchically: lines, circles,…  nose, eye,…face 

 The 3 main features of convolutional processing: 

 Locality: each neuron processes only  

a small part of the picture 

 Weight sharing: the same neuron is  

evaluated at several positions 

 Pooling: the resulting values are  

pooled (eg. taking the max) 

 Example: a “nose detector” 

 Of course, there may be further,  

convolutional of fully conntd. layers 

 Main advantages: 

 Hierachical processing 

 Shift-invariance 

 



 Image recognition may require a lot of layers 

 Lowest levels: local, high resolution details 

 Higher levels: covering wider and wider areas with lower and 

lower resolution, detecting more and more abstract components 

 

 

 

     

  

Convolutional Neural Networks 



 HMMs: the conventional input is the MFCC representation 

 A short-term spectral representation  plus a DCT to decorrelate the features 

 The time context is not taken into consideration (only by the “delta” vectors) 

 DNNs: 

 DNNs do not require the decorrelation of features 

 They can efficiently make use of a wider context (9-33 neighboring frames) 

 From MFCCs we returned to a spectro-temporal input 

representation 

 f: 23-40 mel bands 

 t: 9-33 frames 

 This is an image, so we can apply CNNs! 

 

     

How to Apply CNNs to Speech? 



Convolution along the frequency axis 

 Basic idea: Abdel-Hamid (2012), 

Sainath (2013) 

 How to exploit the shift invariance of 

CNNs? 

 The frequency axis is divided into wider 

bands (the optimum was at 7 bands) 

 We allow small shifts along the freq. axis 

 The output of the convolutional layers is 

processed by further fully connected 

layers 

 Why convolution (shift invariance) helps: 

decreases the speaker and speaking-style 

variance (e.g. tolerates small differences 

in the formant positions) 

 



Results (TIMIT) 

Phone error rate as a function of the pooling size 

 

 

 

 

 

• The optimal size for „pooling” (shifting) is 4-5 mel-channels 

• Convolution reduces the error rate by about 9% relative 

•There is error reduction already at pooling size = 1  

(there is no pooling,  just a local processing of spectral parts!) 



Convolution along the time axis 

 Basic idea: Vesely (2011) 

 We divide the input along the time axis 

 Why convolution helps:  

 Allowing shifts is not important (the 

HMM handles time shifts) 

 It allows the hierarchical processing 

of a wider input with fewer neurons 

 Very similar to the Time-Delay Neural 

Network of Waibel et al from 1989! 

 As by “convolutional” people mean 

convolution by frequency, I prefer calling 

it the hierarchical model 

 The Kaldi implementation of TDNN 

consists of several such layers 

 



Results (TIMIT) 

Fully connected ReLU network 20.6% 

Convolutional network (along time) 18,6% 

•Convolution along time brings an error rate reduction of about 9%  



Convolution along both axes 

• The two concepts of convolution  

(time domain – Vesely vs. freq. domain – Abdel Hamid) 

are totally different, but can be easily combined  

• and this combination results in a significant reduction 

of the recognition error rates. 



Convolution along both axes 

 

 The input is divided along both time  

and frequency 

 The lowest layer perform the convolution 

along frequency 

 A higher layer performs the fusion along 

time 

 The are several further, fully connected 

layers 

 

 

 

 



Error rates (TIMIT) 

Convolution only along the freq. axis 18.8% 

Convolution only along the time axis 18.6% 

Convolution along both axes 17.6% 

• Compared to the previous best result, by combining the two 

convolution methods we obtained a further error rate reduction of 

6% relative 



The Maxout Activation Function 

 “Maxout” can be interpreted as a generalization of the rectifier 

activation function 

 The neurons are divided into groups (eg. 2 neurons/groups) 

 There is one output pre group, defined as the maximum of the 

linear activations within the group 

 



 The convolutional step can be easily combined with the 

maxout activation: 

 Convolution: The „pooling” step fuses the outputs of the same neuron obtained 

at different positions 

 Maxout: The „pooling” step fuses the outputs of different neurons on the same 

input 

 The two pooling operations  

can be executed in one step 

 

 

 

 

     

  

Convolutional Maxout Neurons 



Results 
(TIMIT) 

 

 

 

 

• Other authors have found that Maxout outperforms ReLU most 

importantly in low-resource conditions (<30h) (Miao et al, 2013) 

• Since then, newer variants of the ReLU activation have been 

proposed, but these are not convincingly better. 

• Currently, ReLU is the most popular activation function for DNNs 

Network type PhER (%) 

Conv. ReLU 17,6% 

Conv. Maxout 17,0% 



 During training, a group of randomly selected neurons (10-

50%)  are discarded (their output is replaced by zeros) 

 Effect: the neurons within the same layer are forced to rely less 

on each other 

 Result: decreases the risk of overfitting 

 It can be combined with all the previous network types 

 The only drawback is that training takes 3-5 time longer 

 Results 

(TIMIT): 

 

 

 

The „Dropout” Method (Hinton et al, 2012) 

Network type PhER (%) PhER with 

dropout (%) 

Conv. ReLU  17,6% 16,7% 

Conv. Maxout  17,0% 16.5% 



 

 Goal: get rid of hand-crafted features (MFCC, PLP,…) 

 They might be suboptimal 

 They require expert knowledge 

 Long-term Goal: “End-to-end” speech recognition 

 No separate modules, jut one big network 

 Input: raw sound file, output: text 

 It would be a very big theoretical achievement 

 However, a lot of experts are very skeptic if it’s possible 

 

 

Current trends #1: Recognition from 
 Raw Waveforms 



 The first step of current feature extraction methods is to process 

the signal by a filter bank (e.g mel-filters) 

 The operation of a filter is very similar to the operation of a neuron 

 This gives the idea to learn the filter parameters by a special 

convolutional network structure 

 

 

     

  

Recognition from  Raw Waveforms 



 Tüske et al (Interspeech 2014): 

 

 

 

 

 Google (Interspeech 2015): 

 Google: 

Learning Filter Banks- Results 



 DNNs: 

 We did not obtain significant improvements above 5-6 layers 

 Most people in the literature do not go beyond 5-9 layers 

 CNNs:  

 We applied only 1+1 convolutional layer (along freq+time) 

 “Early” literature: 2 conv. layers is slightly better than 1,  

no further improvements with 3 (Sainath et al., 2013) 

 But nowadays, in image processing, people experiment with 

CNNs of 50-150 layers! 

 The training of these very deep networks require special 

solutions 

 

 

Current Trends #2: Very Deep CNNs 



 Methods to efficiently backpropagate the error to lower layers: 

 „linear pass-through” or „jump” connections 

 „Highway networks” 

 „Linearly augmented” layers 

 „Residual network” 

 These all operate quite similarly: 

 They introduce direct connections 

between layers farther away 

 This allows the direct propagation 

of the error to deeper layers, thus 

alleviates the “vanishing gradient” problem 

 

     

Current Trends #2: Very Deep CNNs 



 One layer of a normal net (V is an extra linear transformation): 

 

 In comparison, a linearly augmented layer: 

 

 T is not necessarily a full transformation matrix, good results were 

obtained using a diagonal matrix, or a fixed (non-trainable) unity matrix 

 

 

 

 

 

(Results on TIMIT, taken from Droppo et al, ICASSP 2016) 

Example #1: Linearly Augmented Layers 



 The networks has „highway” connections which allow the 

information to flow without transformation 

 Layer of a conventional net: 

 Layer of a highway net: 

 Where T is a „transfer gate”:  

 T can take values between 0 and 1 

 The output in the cases of T=0 or T=1: 

 

 

 That is, T controls the ratio of how much is  

let through from the non-transformed x  

and the transformed H(x) 

 

 

Example #2: Highway Networks 



 

 Currently, the fastest developing trend in speech recognition is 

the application of Recurrent Neural Networks (RNNs) 

 While images have no “directions”, speech is a left-to-right 

process, which is definitely a very important factor 

 Currently, very good results are achieved by RNNs, or its more 

refined variants (LSTM, GRU, …) 

 Right now, in speech recognition RNNs seems to be more 

promising for future improvements than CNNs 

 But the two may be combined, eg. using convolution in the 

deeper layers and recurrent layers at higher levels! 

 

Current trends #3: Combination with 
Recurrent Networks 



 
Thank you for your attention! 


