# SpeeD's DNN Approach to Romanian Speech Recognition

Alexandru-Lucian Georgescu, Horia Cucu and Corneliu Burileanu

Speech & Dialogue (SpeeD) Research Laboratory
University "Politehnica" of Bucharest (UPB)



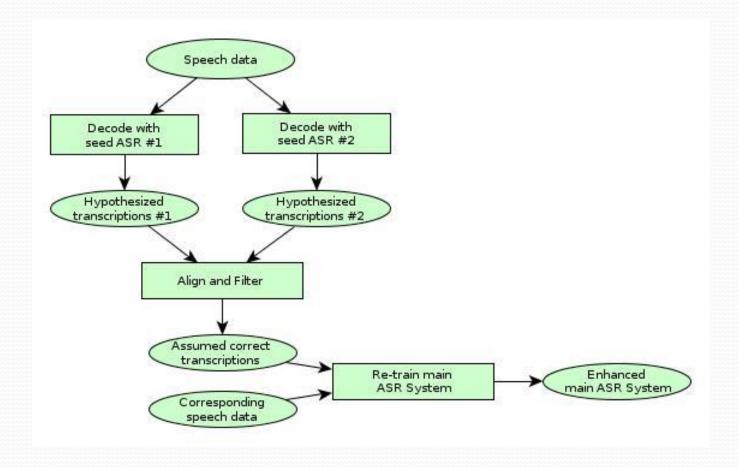
### **SpeeD ASR Improvements**



- SpeeD's 2014 LVCSR system [Cucu, 2014]
  - MFCCs or PNCCs used as speech features
  - HMM-GMM acoustic models trained on ~125 hrs of speech
  - 64k words 3-gram language models trained on ~200M word tokens
- SpeeD's LVCSR improvements since 2014
  - Speech and text resources acquisition
  - Improved language models: larger vocabulary, more grams
  - Improved GMM acoustic models and DNN acoustic models
  - Speech feature transforms (LDA, MLLT)
  - Lattice rescoring after speech decoding



### Speech Corpora




- Read Speech Corpus (RSC) train & eval
  - Created by recording various predefined texts
  - Voluntary speakers used an online recording platform
  - 106 hrs of read speech from 165 different speakers
- Spontaneous Speech Corpus (SSC) train
  - Created using lightly supervised ASR training [Buzo, 2013]
    - broadcast news and talk shows + approximate transcriptions collected over the Internet
  - 27 hrs of speech
- Spontaneous Speech Corpus (SSC) eval
  - Manually annotated to obtain 100% error-free corpus
  - 3.5 hrs of speech (2.2 hrs clean, 1.3 hrs degraded conditions)
- Spontaneous Speech Corpus 2 (SSC 2) train
  - Unsupervised annotation methodology [Cucu, 2014]
  - 350 hrs of un-annotated broadcast news -> 103 hrs of annotated speech



## Unsupervised Speech Corpus Extension







#### Improved Acoustic Models



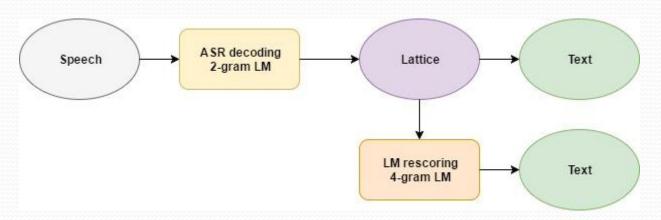
- HMM GMM framework
  - Discriminative training: Maximum Mutual Information (MMI) [Povey, 2008]
    - Maximizes the posterior probability for the training utterances
  - Speaker Adaptive Training (SAT) [Povey, 2008]
    - Adapts acoustic model to speaker characteristics (if speaker info is available)
  - Algorithms available in Kaldi ASR toolkit
- DNN framework
  - Time Delay Neural Network (TDNN) [Zhang, 2014] [Peddinti, 2015]
    - Able to learn long-term temporal dependencies
    - Input: 9 frames of speech
  - Speech features: standard MFCCs + iVectors (useful for speaker adaptation)
  - Input layer size: couple of thousand neurons
  - Output layer size: couple of hundred neurons
  - Hidden layers: 3 6 hidden layers with around 1200 neurons
  - Framework and algorithms available in Kaldi ASR toolkit



#### Improved Language Models



- Kaldi ASR toolkit allows using LMs with larger vocabularies than CMU Sphinx ASR toolkit (limited at 64k words)
- Text corpora used for language modeling
  - Extended by collecting new texts from the Internet
    - 169M word tokens (in 2014) -> 315M word tokens (in 2017)
  - Text collected from the Internet needed diacritics restoration [Petrica, 2014]
  - Talk shows transcriptions (40M word tokens) already available
- Language Models (LMs)
  - Statistical n-gram models
  - Created with SRI-LM by interpolating text corpora with various weights
  - Various n-gram orders: from 1-gram to 5-gram
  - Various vocabulary sizes: 64k, 100k, 150k and 200k words








- After ASR decoding with short history LM (2-gram):
   aceste este un peste de recunoaștere automată a vorbi ei
- After LM rescoring with longer history LM (4-gram):

aceste este un pteste de recunoaștere automată a voorbiiriei



Lattice rescoring concept



## Experimental setup. Speech Corpora



- Read Speech Corpus (RSC)
  - read speech utterances in silent environment
  - clean speech
- Spontaneous Speech Corpus (SSC)
  - spontaneous utterances from talk shows and news broadcasts
  - clean and spontaneous speech, sometimes affected by background noise

| Purpose    | Set         | Size        |             |  |
|------------|-------------|-------------|-------------|--|
|            | RSC-train   | 94 h , 46 m |             |  |
| Training   | SSC-train 1 | 27 h, 27 m  | 225 h, 31 m |  |
|            | SSC-train 2 | 103 h, 17 m |             |  |
| Cyclustian | RSC-eval    | 5 h, 29 m   | 0 h         |  |
| Evaluation | SSC-eval    | 3 h, 29 m   | 8 h, 58 m   |  |



## Experimental setup. Speech features



- Mel-frequency cepstral coefficients (MFCCs)
- Extracted from 25 ms signal window length, shifted by 10 ms
- Final feature vector: 13 MFCCs x 9 frames
- Features transforms
  - Cepstral Mean and Variance Normalization (CMVN)
    - Normalize the mean and variance of raw cepstra
    - Eliminate inter-speaker and environment variations
  - Linear Discriminant Analysis (LDA)
    - Reduce features space dimension keeping class discriminatory information
  - Maximum Linear Likelihood Tranform (MLLT)
    - Capture correlation between the feature vector components



## Experimental setup. Acoustic Models



- HMM GMM framework
  - Speech features: 13 MFCCs +  $\Delta$  +  $\Delta\Delta$
  - LDA + MLLT
  - 2.500 5.000 senones, 30.000 100.000 Gaussian Densities
  - Maximum Mutual Information (MMI)
    - Maximize the posterior probability for the training utterances
  - Speaker Adaptive Training (SAT)
    - Adapt acoustic model to speaker characteristics
- Time Delay Neural Network (TDNN)
  - Speech features: 40 MFCCs x 9 frames + 1 iVector of 100 elements
  - LDA + MLLT
  - Input layer size: 3500 and 4400 neurons
  - Output layer size: 350 and 440 neurons
  - 3 and 6 hidden layers
  - Up to 15 training epochs



## Experimental setup. Language Models



- Text corpora used for language modeling
  - Collected news from the Internet (315 M word tokens)
  - Broadcasted talk shows (40M word tokens)
- Language Models (LMs)
  - Statistical n-gram models
  - Created with SRI-LM by interpolating text corpora with 0.5 weight
  - Different n-gram order: from 1-gram to 5-gram
  - Different vocabulary size: 64k, 100k, 150k and 200k words







- HMM –GMM framework
- LM used: 3-gram, 64k words

| Acoustic model |             | Feat. Transf. & | WER [%]  |          |  |
|----------------|-------------|-----------------|----------|----------|--|
| #Senones       | # Gaussians | training tech.  | RSC-eval | SSC-eval |  |
| 2.500          | 30.000      | n/a             | 12.3     | 29.7     |  |
| 4.000          | 50.000      | LDA+MLLT        | 11.3     | 28.9     |  |
| 5.000          | 100.000     | +SAT            | 9.7      | 27.5     |  |
| 5.000          | 100.000     | +MMI            | 9.0      | 26.4     |  |



#### Experimental results



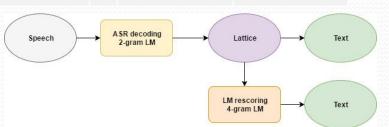
- DNN framework
- DNN configurations
  - 3500 in. neurons, 350 out. neurons, 6 hidden layers, 8 epochs
  - 4400 in. neurons, 440 out. neurons, 6 hidden layers, 8 epochs
  - 4400 in. neurons, 440 out. neurons, 3 hidden layers, 15 epochs
- LM used: 3-gram, 64k words

| DNN                                | # train Enachs  | WER [%]  |          |  |
|------------------------------------|-----------------|----------|----------|--|
| Config.                            | # train. Epochs | RSC-eval | SSC-eval |  |
|                                    | 1               | 6.4      | 21.7     |  |
|                                    | 2               | 6.2      | 21.0     |  |
| 3500 in neurons                    | 3               | 6.3      | 20.7     |  |
| 350 out neurons<br>6 hidden layers | 4               | 6.4      | 21.0     |  |
|                                    | 5               | 6.4      | 21.2     |  |
|                                    | 8               | 6.9      | 22.1     |  |








| No selections      | ASR<br>decoding<br>LM order |  | WER [%]          |          |  |  |
|--------------------|-----------------------------|--|------------------|----------|--|--|
| Vocabulary<br>size |                             |  | RSC-eval         | SSC-eval |  |  |
| Size               |                             |  | w/o LM rescoring |          |  |  |
|                    | 1-gram                      |  | 15.0             | 36.5     |  |  |
| 100 k words        | 2-gram                      |  | 6.44             | 23.4     |  |  |
|                    | 3-gram                      |  | 5.18             | 20.6     |  |  |
|                    |                             |  |                  |          |  |  |
|                    | 1-gram                      |  | 14.6             | 36.4     |  |  |
| 150 k words        | 2-gram                      |  | 6.26             | 23.3     |  |  |
|                    | 3-gram                      |  | 5.00             | 20.5     |  |  |
|                    |                             |  |                  |          |  |  |
|                    | 1-gram                      |  | 14.2             | 36.4     |  |  |
| 200 k words        | 2-gram                      |  | 5.90             | 23.2     |  |  |
|                    | 3-gram                      |  | 4.62             | 20.5     |  |  |



### Lattice rescoring



| Manakalawa         | ASR      | WEF              | WER [%]  |  | WER [%]           |          |
|--------------------|----------|------------------|----------|--|-------------------|----------|
| Vocabulary<br>size | decoding | RSC-eval         | SSC-eval |  | RSC-eval          | SSC-eval |
|                    | LM order | w/o LM rescoring |          |  | with LM rescoring |          |
|                    | 1-gram   | 15.0             | 36.5     |  | 6.06              | 22.5     |
| 100 k words        | 2-gram   | 6.44             | 23.4     |  | 5.04              | 20.3     |
|                    | 3-gram   | 5.18             | 20.6     |  | 5.05              | 20.1     |
|                    |          |                  |          |  |                   |          |
| 150 k words        | 1-gram   | 14.6             | 36.4     |  | 5.81              | 22.4     |
|                    | 2-gram   | 6.26             | 23.3     |  | 4.85              | 20.3     |
|                    | 3-gram   | 5.00             | 20.5     |  | 4.85              | 20.1     |
|                    |          |                  |          |  |                   |          |
| 200 k words        | 1-gram   | 14.2             | 36.4     |  | 5.39              | 22.4     |
|                    | 2-gram   | 5.90             | 23.2     |  | 4.49              | 20.2     |
|                    | 3-gram   | 4.62             | 20.5     |  | 4.48              | 20.0     |



## Spee D Speech & Dialogue Memory consumption. Real time factor

- Intel Xeon 3.2 GHz with 16 cores
- 192 GB RAM

| LM order    | Decoding may mamory          | Decoding time [xRT] |          |  |  |
|-------------|------------------------------|---------------------|----------|--|--|
| LIVI OI GEI | .M order Decoding max memory |                     | SSC-eval |  |  |
| 1-gram      | ~ 1.5 GB                     | 0.04                | 0.08     |  |  |
| 2-gram      | ~ 8.5 GB                     | 0.05                | 0.08     |  |  |
| 3-gram      | ~ 30 GB                      | 0.06                | 0.10     |  |  |







| SpeeD LV                        | WER [%]                                    |          |          |
|---------------------------------|--------------------------------------------|----------|----------|
| Acoustic model                  | Language Model                             | RSC-eval | SSC-eval |
| HMM – GMM<br>(CMU Sphinx, 2014) | 64 k words, 3-gram                         | 14.8     | 39.1     |
| HMM – GMM<br>(CMU Sphinx, 2017) | 64 k words, 3-gram                         | 12.6     | 32.3     |
| HMM – GMM<br>(Kaldi, 2017)      | 64 k words, 3-gram                         | 9.0      | 26.4     |
|                                 | 64 k words, 3-gram                         | 6.2      | 21.0     |
| DNN (Kaldi, 2017)               | 200 k words, 2-gram (dec),<br>4-gram(resc) | 4.5      | 20.2     |



#### Conclusions



- Several improvements of SpeeD LVCSR system for Romanian language were presented
- The application of feature transforms, discriminative training and speaker adaptive training algorithms led to a lower WER in HMM-GMM acoustic models
- The use of DNN acoustic models is the most important change
  - Relative WER improvements between 20.7% to 30.8% over HMM– GMM models
- Increasing the LM size & the use of lattice rescoring triggered a lower WER
- The overall relative WER improvement over the 2014 system
  - **70**% on read speech
  - **48**% on spontaneous speech

## Thank you!